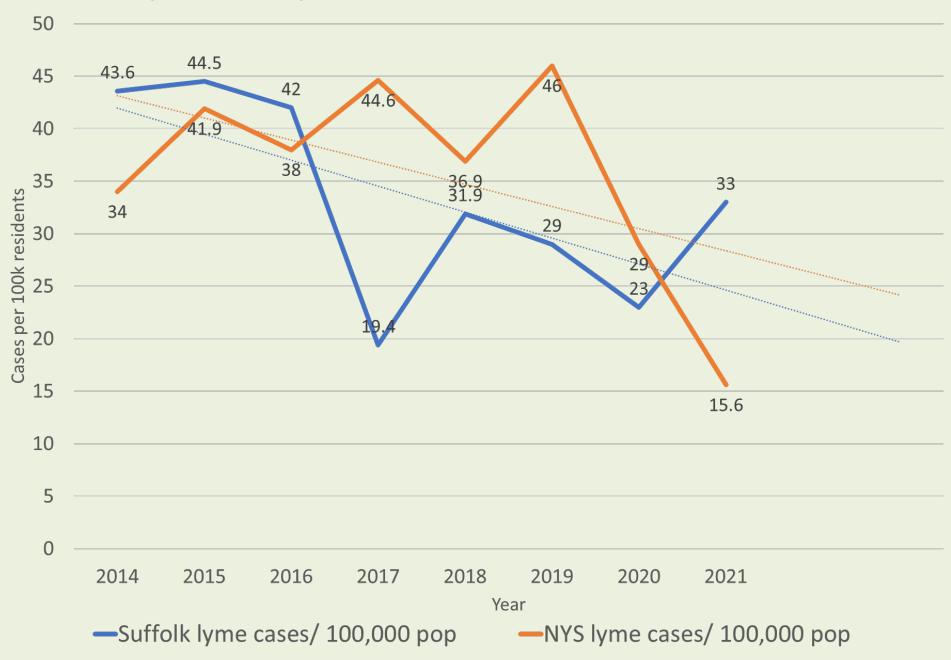
Lyme and Tick-Borne Diseases

Luis A. Marcos, MD, MPH, FIDSA
Associate Professor of Medicine
Director, Tick-Borne Disease Clinic
Director, Fellowship Program
Division of Infectious Diseases (Dept. Medicine)
Department of Microbiology and Immunology
Stony Brook University (SUNY)

No disclosures


Grants from Department of Defense on Babesia and Lyme disease 2022-2026

- * 2022-2023 Member for Tick-Borne Disease Committee at NYS
 - 2021 Member for SubCommitte Tick-Borne Disease Committee, Lyme Treatment (HHS)

OUTLINE

- Know your ticks
- New York: Epicenter of LD
- Erythema migrans
- LD can cause a chronic infection
- Post-Treatment LD Syndrome

Lyme cases per 100,000 residents, Suffolk vs NYS

LESSON 1

KNOW YOUR TICKS

TICKS OF NEW YORK

Deer tick (Ixodes scapularis)

- Borrelia burgdorferi and B. mayonii (which cause Lyme disease)
- Anaplasma phagocytophilum (anaplasmosis),
- B. miyamotoi disease (a form of relapsing fever)
- Ehrlichia muris eauclairensis (ehrlichiosis)
- Babesia microti (babesiosis)
- Powassan virus (Powassan virus disease).

Lone start tick (Amblyomma americanum)

- Ehrlichia chaffeensis and E. ewingii (which cause human ehrlichiosis)
- Francisella tularensis (tularemia)
- Heartland virus (Heartland virus disease)
- Bourbon virus (Bourbon virus disease)
- Southern tick-associated rash illness (STARI).

American Dog tick (Dermacentor variabilis)

- Francisella tularensis (tularemia)
- Rickettsia rickettsii (Rocky Mountain spotted fever).

100x Microscope

For Smartphone

Zoom 100x

Exempt Driver

High-Resolution

Instant Sharing

Easy Operation

switch cover slide down to turn on, slide up to turn off.

Turn On

Turn Off

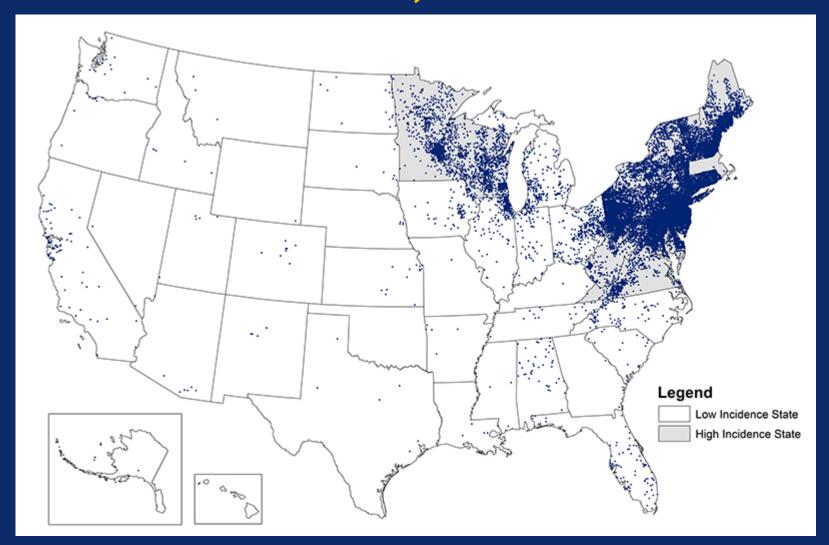
Type: Female Deer Tick

Ixodes Scapularis

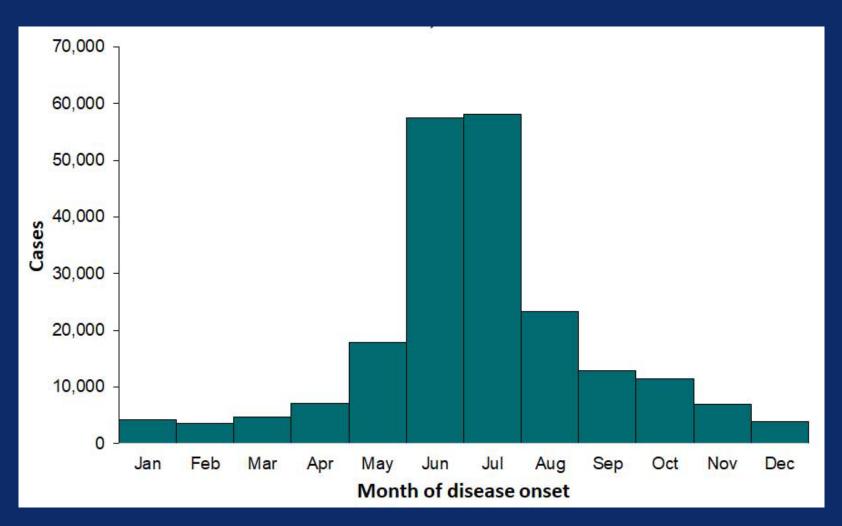
Age: Adult

Fully Engorged

Mouth Parts Missing


ID DIVISION WEBSITE, **STONY BROOK UNIVERSITY**

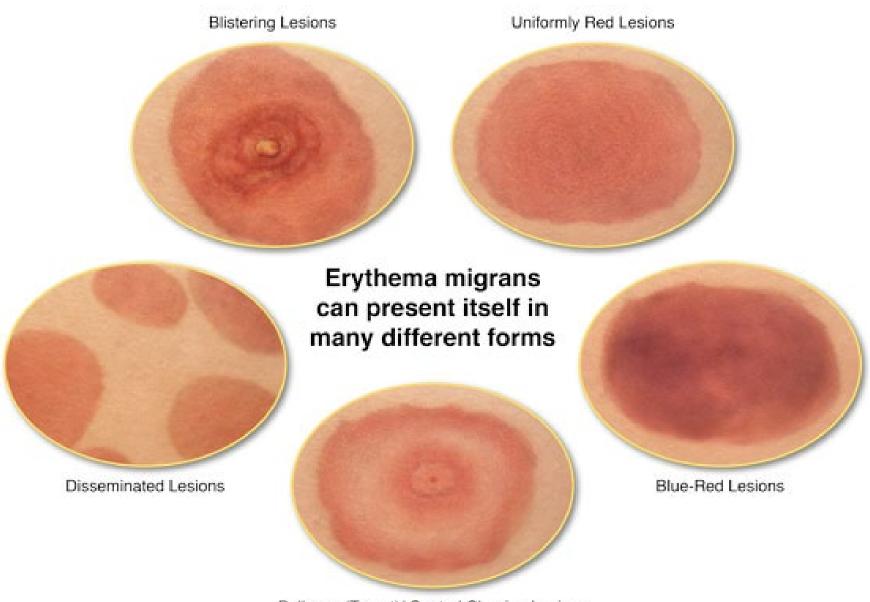
LESSON 2


WE LIVE IN THE EPICENTER OF LYME DISEASE IN THE US

Reported Cases of Lyme Disease — United States, 2019

Source: CDC. Incidence in NY: 14.6 / 100,000 population. Absolute: 2847 confirmed cases, second in the country.

Confirmed Cases of Lyme Disease in the US by Month of Disease Onset, 2008-2018


LESSON 3

ERYTHEMA MIGRANS

Early localized Disseminated infection. Localized infection, usually infection systemic symptoms without systemic symptoms Erythema migrans Lyme neuroborreliosis Lyme arthritis Arthritis in one or a few Often accompanied Acute neurological involvement, by flu-like symptoms often lymphocytic meningitis, joints, most commonly the knee, with minimal, in the United States cranial neuritis or radiculoneuritis if any, systemic symptoms Stage 1 Stage 2 Stage 3 Days-weeks Weeks-months Months-years Acrodermatitis Borrelial lymphocytoma Carditis chronica atrophicans Oedema (purplish in colour), Dense polyclonal First-toatrophy of the skin and local lymphocytic infiltration, third-degree atrioventricular peripheral sensory neuritis, usually often on the nipple in adults or the earlobe in children without systemic symptoms block Europe Both Europe and North America Nature Reviews | Disease Primers

Erythema migrans

Bullseye (Target)/ Central Clearing Lesions

Atypical erythema migrans due to use of steroids topical cream

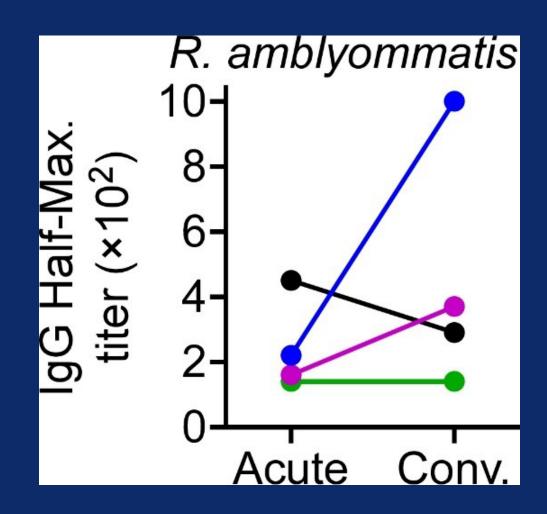
STARI OR LYME?

"Many people, even health care providers, can be confused about whether the lone star tick causes Lyme disease. It does not. Patients bitten by lone star ticks will occasionally develop a circular rash similar to the rash of early Lyme disease. The cause of this rash has not been determined". CDC

STARI: southern tick-associated rash illness. Symptoms: fatigue, headache, fever, and muscle pains STARI has not been linked to arthritis, neurologic disease, or chronic symptoms. Researchers once hypothesized that STARI was caused by the spirochete, *Borrelia lonestari*, however other studies did not support this finding.

The cause of STARI remains unknown.

Rickettsia amblyommatis infection transmitted by Amblyomma americanum in New York

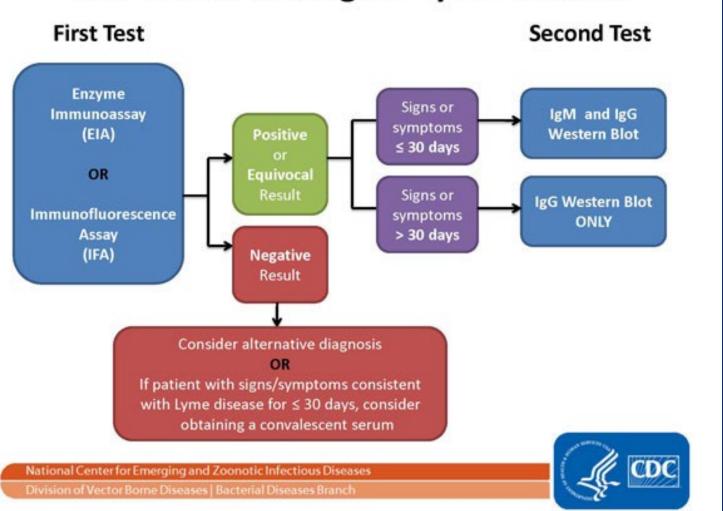

Figure 1. Human patients

elicit R. amblyommatis-

specific IgG responses after

A. americanum bite.

R. amblyommatis
may cause RMSF
serology positive,
be aware!


Funding: DOM, SBU. PI: Marcos LA. Co-PI: Kim H.

LESSON 4

LYME DISEASE CAN LEAD TO A CHRONIC INFECTION

Serology

Two-Tiered Testing for Lyme Disease

Revisiting the Lyme Disease Serodiagnostic Algorithm: the Momentum Gathers

Adriana R. Marquesa

TABLE 1 Sensitivity of MTT algorithm versus that of the STT algorithm in acute-phase samples from patients with erythema migrans

	MTT algorithm ^a		STT algorithm ^b	
Reference(s) (no.)	Test program ^c	Acute phase EM sensitivity (%)	Test program	Acute-phase EM sensitivity (%)
Branda et al. (16)	WCS Vidas f/b C6 EIA	52.6	WCS Vidas f/b WB	42.1
Branda et al. (27)	WCS W EIA f/b C6 EIA	38.2	C6 EIA f/b WB	36.4
	WCS W EIA f/b VIsE CLIA	36.4	VIsE CLIA f/b WB	34.5
	VIsE CLIA f/b C6 EIA	54.5	WCS W f/b WB	25.4
Molins et al. $(28)^d$	WCS Vidas f/b C6 EIA	50	WCS Vidas f/b WB	47.5
Molins et al. $(29)^d$	WCS Vidas f/b C6 EIA	50	LYM/G Vidas f/b WB	42.5
	LYM/LYG f/b C6 EIA	55	WCS Vidas f/b WB	47.5
Pegalajar-Jurado et al. $(4)^d$	WCS Captia f/b C6 EIA	55	WCS Captia f/b WB	50
	WCS Captia f/b VIsE CLIA	57.5	VIsE CLIA f/b WB	42.5
	VIsE CLIA f/b C6 EIA	50	C6 EIA f/b WBe	42.5
Wormser et al. (11, 25)	WCS EIA f/b C6 EIA ^f	58.4	C6 EIA f/b WB	37.6
			WCS f/b WB	38.3

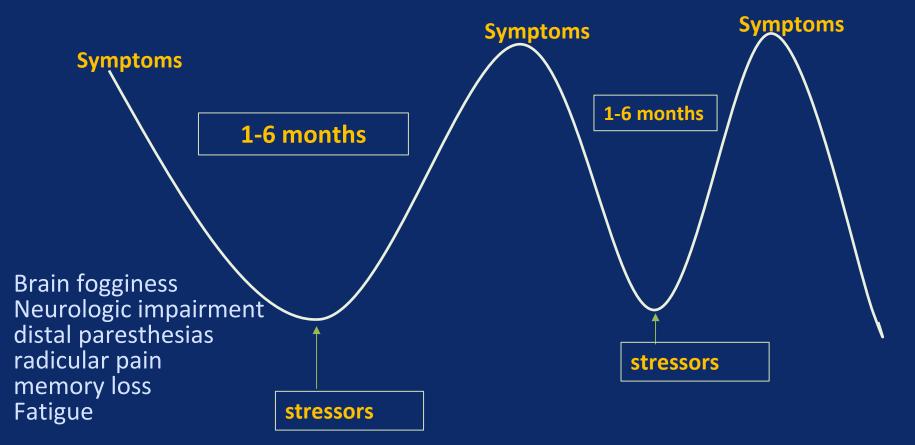
CLINICAL AND VACCINE IMMUNOLOGY, May 2011, p. 851–859 1556-6811/11/\$12.00 doi:10.1128/CVI.00409-10 Copyright © 2011, American Society for Microbiology. All Rights Reserved.

Multiplex Immunoassay for Lyme Disease Using VlsE1-IgG and pepC10-IgM Antibodies: Improving Test Performance through Bioinformatics[∇]

TABLE 3. Sensitivity of Western blotting versus multiplex assay by disease stage						
	Sensitivity (no. [%] of positive samples)					
Stage (no. of cases)	IgG blotting	IgM blotting	Either IgG or IgM blotting	2-Tier blotting ^a	Multiplex assay ^b	
Early acute phase (79) Early convalescent phase (82)	6 (7.6) 17 (20.7)	29 (36.7) 60 (73.2)	31 (39.2) 63 (76.8)	31 (39.2) 56 (68.3)	36 (45.7) 73 (89.0) ^c	
Stages II and III combined ^d (47) Neuro/carditis ^e (stage II) (18) Arthritis (stage III) (29)	39 (83.0) 11 (61.1) 28 (96.6)	32 (68.1) 13 (72.2) 19 (65.5)	45 (95.7) 16 (88.8) 29 (100)	43 (91.5) 15 (83.3) 28 (96.6)	47 (100) 18 (100) 29 (100)	
Posttreatment stages II and III (16) Posttreatment stage I (18)	13 (81.25) 4 (22.2)	4 (25) 9 (50.0)	13 (81.3) 10 (55.6)	13 (81.3) 4 (22.2)	16 (100) 11 (61.1) ^g	
	4 (22.2)	9 (50.0)	10 (55.6)	4 (22.2)		

- EM: history and visual inspection of the skin lesion. Laboratory testing not needed or recommended.
- Tests are not sensitive in very early disease
- Avoid overtesting for Lyme for unspecific chronic symptoms (especially avoid IgM testing)

	June 21	[2]	mar '22	11 1000		23	24	124	24	
Lyme AB Screen (Quest)	4.55			4.00	3.49	2.94	3,97	3.97	3.43	
yme VISE Ig F/Fgm Ab (Northwell Labs)		4.33 Positive			J				also Lyne 18, Screen	
Chemiluninescent Immunassay (Northwell Cabs) (Quest)		チルテ Positive							1.02	
Syme Fgm Ab chemiluminescent Immunoassay (Mother Labs) (Quest)		3.09 85HH							L=.90 (assume	
Lyme Disease artibolics (TocfIEM) Immunoblot	NEG C			TGG Bist Meg.	reg.	TOURS	reg.	Meg.	O.(C)	
(duest)	Neg.		-	reg.	IGM Blot Neg.	Neg,	Neg.	Neg.	neg.	
Bands	TEE .			03K0	23 KD	23 KO	23 KD	166 28 MD	166 166 23 KD	
	15M			TG-M	IEM	IEM	IFM	I6M	±6W	
AST (average 27.5 since 2015)	23	,	36	26		43	40	27	28	
ALT (avege 23 since 2015) -June 2021	17		33	26		55	49	31	39	
Doxycycline loomg (100 mg per pill; 42 pills/21 days)	*	Ful to	ec s				Feb	**		


TREATMENT

- Early, localized and disseminated, Lyme disease
 - EM: doxycycline, 100 mg BID for 10 days
 - Meningitis or Neuropathy: Ceftriaxone 2gr IV daily or cefotaxime 2gr IV q8h or doxycycline 100 mg BID for 14 -21 days
 - Cardiac disease: All above or cefuroxime 500mg PO BID x 14 days
- Late Lyme disease
 - Arthritis: PO regimen for 28 days
 - Recurrent arthritis: IV ceftriaxone for 14-28 days (but refractory arthritis does not respond to ATB)
 - Neurological Lyme disease: IV regimen for 14-28 days

LESSON 5

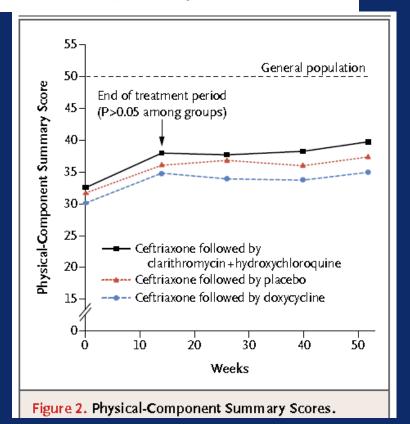
POST TREATMENT LYME DISEASE SYNDROME

Chronic Symptoms on treated Lyme patients

Post Lyme disease syndrome

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812


MARCH 31, 2016

VOL. 374 NO. 13

Randomized Trial of Longer-Term Therapy for Symptoms Attributed to Lyme Disease

Anneleen Berende, M.D., Hadewych J.M. ter Hofstede, M.D., Ph.D., Fidel J. Vos, M.D., Ph.D., Henriët van Middendorp, Ph.D., Michiel L. Vogelaar, M.Sc., Mirjam Tromp, Ph.D., Frank H. van den Hoogen, M.D., Ph.D., A. Rogier T. Donders, Ph.D., Andrea W.M. Evers, Ph.D., and Bart Jan Kullberg, M.D., Ph.D.

Antibiotics don't improve symptoms for long term symptoms attributed to Lyme Disease.

Randomized Controlled Trial > Neurology. 2019 Mar 26;92(13):e1447-e1455.

doi: 10.1212/WNL.0000000000007186. Epub 2019 Feb 22.

Effect of prolonged antibiotic treatment on cognition in patients with Lyme borreliosis

Anneleen Berende ¹, Hadewych J M Ter Hofstede ², Fidel J Vos ², Michiel L Vogelaar ²,

Methods: Data were collected during the Persistent Lyme Empiric Antibiotic Study Europe (PLEASE) trial, a randomized, placebo-controlled study. Study participants passed performance-validity testing

Cognitive performance does not improve with longer antibiotic treatment compared to shorterterm treatment in patients with persistent symptoms attributed to Lyme borreliosis.

Conclusions: A 2-week treatment with ceftriaxone followed by a 12-week regimen of doxycycline or clarithromycin/hydroxychloroquine did not lead to better cognitive performance compared to a 2-week regimen of ceftriaxone in patients with Lyme disease-attributed persistent symptoms.

LESSON 6 NOT EVERYTHING IS LYME, WE HAVE 10 MORE TICK BORNE DISEASES IN NY

Annals of Internal Medicine

Original Research

Borrelia miyamotoi Disease in the Northeastern United States

A Case Series

Philip J. Molloy, MD; Sam R. Telford III, ScD; Hanumara Ram Chowdri, MD; Timothy J. Lepore, MD; Joseph L. Gugliotta, MD; Karen E. Weeks, BS; Mary Ellen Hewins, BS; Heidi K. Goethert, ScD; and Victor P. Berardi

- Relapsing fever
- First case in the US, 2013
- B. miyamotoi may cause chronic meningitis in immunocompromised host
- B. miyamotoi can cause a summer illness without a rash
 - Clinical syndrome is different from Lyme disease

Table 1. Clinical Features of the 51 Case Patients With BMD

Feature	Value*
Mean age (range), y	55 (12-82)
Male	29 (57)
Fever/chills	49 (96)
Headache†	49 (96)
Myalgia	42 (84)
Arthralgia	39 (76)
Malaise/fatigue	42 (82)
Rash	4 (8)
Gastrointestinal symptoms‡	3 (6)
Cardiac/respiratory symptoms§	3 (6)
Neurologic symptoms	4 (8)

Co-infections Clinical

SHORT REPORT

Case Age

Open Access

Presence of *Borrelia miyamotoi* infection in a highly endemic area of Lyme disease

Laboratory findings

Table 1 Demographics, clinical manifestations and laboratory results on patients with *Borrelia miyamotoi* PCR positive in the blood

	_		manifestations						
	Gender		manifestations	WBC (/mm³)	Hb (g/dL)	Platelets (/	Creatinine (mg/ dL)	AST (IU/L)	ALT (IU/L)
1	90/M	Negative	Fatigue, vomiting, fevers	4100 (90% N)	9.7	91,000	1.46	74	46
2	22/M	Negative	Headaches, fevers, abdominal pain, arthralgia	3200 (88% N)	14.7	99,000	0.8	73	117
3	26/M	Negative	Fevers, diarrhea, hematuria	5400 (40%N, 30%B)	16.3	127,000	1.05	51	68
4	74/M	Negative	Fatigue, arthralgia	4600 (63% N)	14.2	154,000	0.7	21	28
5	32/M	Negative	Fevers, muscle pain, fatigue	3000 (45%N, 9%B)	15.6	166,000	1.0	98	65
6	74/M	Negative	Fevers, myalgia, chills, vomiting	6800 (N37%, B17%)	15.6	51,000	3.1	212	165
7	68/M	Negative	Fever, myalgia, arthralgia, fatigue	Unknown	Unknown	Unknown	Unknown	20	18
8	67/F	Negative	Fevers, arthralgias, mylagias	5500 (N 64%)	14.7	260,000	0.8	33	23
9	60/M	Unknown	Unknown Fevers, arthralgia, myal- gias, fatigue	7100 (N 60%)	14.8	Unknown	Unknown	Unknown	Unknown

Heartland Virus Transmission, Suffolk County, New York, USA

Alan P. Dupuis II,¹ Melissa A. Prusinski,¹ Collin O'Connor, Joseph G. Maffei, Kiet A. Ngo, Cheri A. Koetzner, Michael P. Santoriello, Christopher L. Romano, Guang Xu, Fumiko Ribbe, Scott R. Campbell, Stephen M. Rich, P. Bryon Backenson, Laura D. Kramer, Alexander T. Ciota

Heartland virus is here

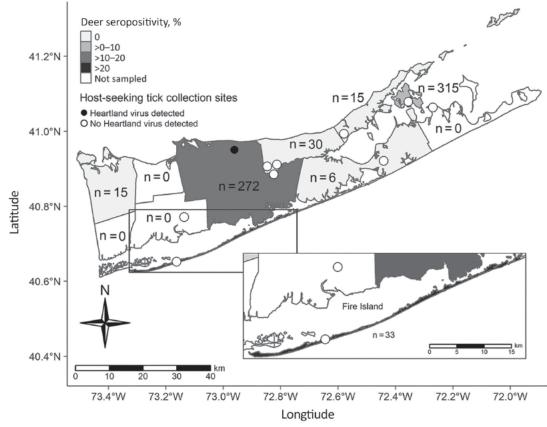
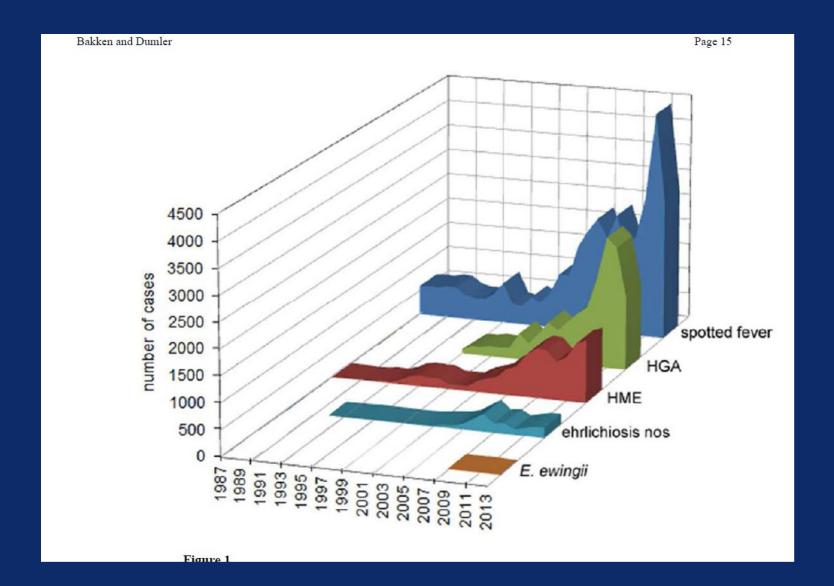



Figure 1. Tick collection sites in study of heartland virus transmission, Suffolk County, New York, USA. Numbers within townships indicate sample size of deer tested for neutralizing antibody.

U.S Data of TBD 1987-2013

VECTOR-BORNE AND ZOONOTIC DISEASES Volume 8, Number 5, 2008

© Mary Ann Liebert, Inc. DOI: 10.1089/vbz.2007.0271

Tick-Borne Diseases in North Carolina: Is "Rickettsia amblyommii" a Possible Cause of Rickettsiosis Reported as Rocky Mountain Spotted Fever?

Table 3. Results of Diagnostic Tests of Probable RMSF Patients. Values Represent the Reciprocals of End-Point Dilutions Giving Strong Fluorescence in IFA Tests

Sera drawn (days after		Rickettsia rickettsii an			$\overline{}$	"Rickettsia amblyommii" antigens				
	ons	set)	IgM	(mu)	IgG (g	amma)	IgM	(mu)	IgG (g	gamma)
Patient	acute	conv.	acute	conv.	acute	conv.	acute	conv.	acute	conv.
1	0	24	28	128	<16	16	512	256	128	64
2	5	59	28	128	64	32	256	128	32	64
3	1	51	28	128	32	32	128	128	256	256
4	9	64	64	64	16	16	16	256	256	1024
5	1	14	28	128	16	64	256	256	<16	512
6	21	46	32	32	64	64	128	64	<16	512

RMSF IgG 1:64 is due to Ricketssia amblyommii?

TICK BORNE DISEASES

TICK BORNE DISEASES	Human Monocytic Ehrlichiosis (HME)	Human Granulocytic Anaplasmosis (HGA)	Babesiosis	
Organism Ehrlichia chaffeen		Anaplasma phagocytophilum	Babesia microti	
Vector	Lone star tick (Amblyomma americanum)	Deer tick (Ixodes scapularis)	Deer tick (Ixodes scapularis)	
Clinical Manifestations	Fever, headache, rash, leukopenia, thrombocytopenia (95%) Transaminitis	Fever, headache, leukopenia, thrombocytopenia (70%) Transaminitis No rash	Thrombocytopenia (95%) Mild transaminitis Mild jaundice Dark urine Splenomegaly (pain)	
Diagnosis	PCR in blood (test of choice) Convalescent titers (IgM is negative during first week). A titer above 256 is indicative of	PCR in blood Convalescent titers 4-fold higher titers	Blood smear microscopy x 3 PCR in blood Convalescent titers	

Treatment

Doxycycline 100mg PO BID x
7-14 days

Complications

Myocarditis, cholecystitis,
mortality 2-5%

recent infection.

Small bowel perforation, mortatlity 1%

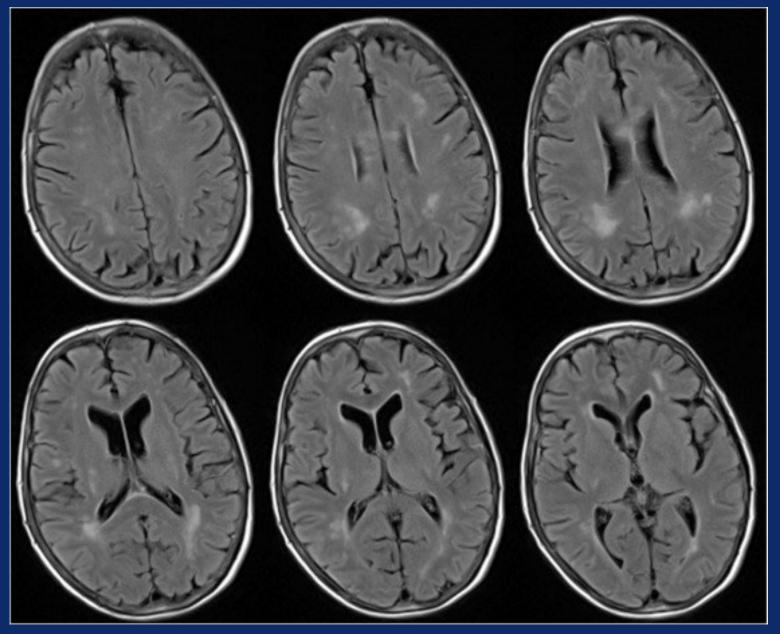
Doxycycline 100mg PO BID x

7-14 days

x 7-10 days

Severe anemia, acute respiratory distress syndrome, relapsing disease on immunocompromised patients

Atovaquone 750mg PO BID

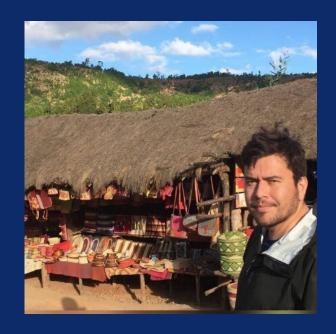

and azithromycin (500mg loading dose, 250mg PO daily)

POWASSAN VIRUS

POWASSAN VIRUS INFECTION

	1	2	3	4
Age Gender	70 y/o Man	53 y/o Woman	25 y/o Man	66 y/o Man
Fever AMS	104.7 F Yes	103 F Yes	101.3 F Yes	Afebrile Yes
CSF	40 white blood cells (WBCs)/mm³ (normal: <4/mm³) (87% lymphocytes) with elevated protein (96 mg/dL; normal: 2050 mg/dL)	148 WBCs/mm ³ (46% neutrophils, 40% lymphocytes).	920 WBCs/mm³ (74% lymphocytes) with elevated protein (77 mg/dL)	54 WBCs/mm³ (95% lymphocytes) and elevated protein (67 mg/dL)
Serology	POW virus-specific IgM; neutralizing antibody (1:640 titer)	POW virus-specific IgM and neutralizing antibody (1:640 titer)	positive for POW virus- specific IgM antibody. The serum sample also had neutralizing antibody (1:80 titer) to POW virus	POW virus-specific IgM and neutralizing antibody (1:640 titer)
Outcome	unable to move his left arm or leg after three months	Nine months after onset of symptoms, she was walking and had regained her strength, but the ophthalmoplegia continued.	When discharged home 44 days later, the patient required assistance to stand and perform daily activities	When discharged home 11 days later, he could walk but had cognitive difficulties, including severe memory lapses.

Outbreak of Powassan Encephalitis --- Maine and Vermont, 1999—2001. MMWR 2001.



Brain MRI: T2/FLAIR white matter hyperintensity involving the deep and superficial periventricular white matter and corpus callosum

ALGORITHM FOR TICK-BORNE DISEASES IN NEW YORK Order PCR in Blood for these pathogens: -Anaplasma (Deer Tick) YE -Ehrlichia (Lone Star Tick) -Babesia (Deer Tick) -Borrelia miyamotoi (Deer Tick) **THROMBOCYTOPENIA** Flu-like Syndrome **Erythema Migrans Carditis Meningitis Lyme Serology (Modified** Two-Tier Testing -Γick) preferred)

Funding

- 1. NY Senate (2018-2019)
- 2.NIAID-NIH (Tufts University / 2019-2021).
- 3. Department of Defense (NYMC). Award Number W81XWH-20-1-0508 (2019-2021) & W81XWH-22-1-0947 (2022-25)
- 4. SBIR (L2 Diagnostics). 2R44AI136118-02.
- 5.Pilot Project Grant Application, Department of Medicine, Stony Brook University.

Stony Brook University

Dr. Bettina Fries (Chief ID Division)

Dr. Vince Yang (Chairman of Medicine)

Dr. Jorge Benach (Microbiology)

Dr. David Thanassi (Microbiology)

Dr. Hwan Kim (Microbiology)

Dr. Eric Spitzer (Laboratory Director)

Catherine DeLuca (Head of Lyme lab)

Dr. Eric Morley (Director ED clinical

services)

Dr. Mathew Tharakan (Director IT)

Tick-Borne Research Team

Pooja Lambda Sara Krivacsy

Renaissance School of Medicine Stony Brook University

NIH (Lyme Clinic)

Dr. Adriana Marques Siu Turk

Columbia University

Dr. Rafal Tokarz

Tufts University

Dr. Linden Hu

Cornell University

Dr. Laura Kirkman

NYMC

Dr. Dana Mordue (Babesia)

Dr. Gary Wormser (Lyme)